Chapter 9
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9.1 Xcray analysis: Why bother?

AEM: analytical electron microscope

I::) EDX: X-ray energy-dispersive spectrometer

Why bother?

TEM gives us two-dimensional projected images of 3D
transparent specimens.

The operator need substantial experience in order to
interpret the images correctly.



(A)  Counts

'lc{xa' Amixa'




9.2TEM beam-specimen interactions and signals
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X-RAY EMISSION
What we get from X-ray?

e Element constitute
e Quantify the amount of element

Two kinds of X-rays are produced:

e Characteristic X-rays: useful to the materials scientist
e Bremsstrahlung X-rays: useful to the biologist

—> electron decelerated by the Coulomb field of the nucleus, it
emits Bremsstrahlung X-ray.
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EELS and x-Ray Signal Generation

EELS signal generation

®©@

“no interaction”
elastic inelastic

X-ray signal generation




Nomenclature of EELS ionization edges

After: Ahn & Krivanek, EELS Atlas
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How to pr haracteristic X-rays?
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What are they "characteristic™?

The energy of the emission is characteristic of the difference
in energy of the two shells involved and is unique to the atom.



DIPOLE-SELECTION RULE

The change A/ in the angular momentum quantum
number between the initial and final states must

cqual £1.

Electrons must obey
when they jumped
between shells
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Selection rule: |ELECIRONSHELLS

Electrons must obey when them jumped between shells ‘ Al=tl ,Aml= £1,0
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The change A/ in the angular momentum quantum
number between the initial and final states must
equal £1.



Density of states \
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X-ray fluorescence yield
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X-ray fluorescence yield (log scale)
as a function of atomic number

Yield 1s very low for low z elements
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9.3 EDX vs EELS

® The EELS is one step signal, while EDX 1s a
two step signal (low x-ray fluorescence yield
for low Z). In general, the yield rate of the

EELS 1s higher than EDX.

® the signal of EELS concentrates in a small
angle range of the transmitted beam, but the
EDX signal spans around larger angle range.

(a) These two cause EELS has higher core loss
signal
(higher Signal to noise ratio, EELS has less recording
time)



X-ray and EELS spectra

(b) EDX has better Signal/ background ratio
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3 COMPONENTS

The three main parts of an XEDS system are
(1) the detector

(1) the processing electronics

(111) the computer

Si(Li) detector and SDD (Silicon Drift Diode)
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74! Semiconductor Detector

The XEDS produces spectra which are plots of X-ray counts versus X-ray energy.
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Anti-reflective  Ice/contamination

Al coating
20 nm — 50 nm

L

Jios

Si dead layer

(p-type) ~100nm
e
20 nm Au
electrode

Window | _’I
Be, BN, ! Active Si !
diamond,” = " (intrinsic) !
polymer 1000 V bias 3 mm

0.1 nm — 7nm

Si ‘dead’ layer

(n-type) ~100nm
Usually, Si contains p-type impurity,
We usually compensate with Li to

create Intrinsic Si. Si(Li) is operated

under LN2 temperature to prevent
Li drift
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3.8eV
It takes ~3.8 eV to generate an electron-hole pair in
Si,so a Be K, X-ray will create at most ~29 electron-

hole pairs, giving a charge pulse of ~5x107'* C!

(a) The energy required for the e-h transfer in Si at LN2 temperature is
~ 3.8eV (this is not the band gap energy, but from statistical)

(b) Characteristic X-ray has energy exceeding lkeV that is enough to
generate thousands of e-h pairs

(c) The number of e-h pair is proportional to the energy of incoming x-

ray
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|. detector 2.Processing electronics 3.MCA display
Computer
e | |
X-ray l ¢ 1?lls.§e Energy
— detector .p=, Pulse processor ——-. MCA display
On/ off

, MCA: multi-channel analyzer
(Analyze one x-ray photon at a time)

The detector generates a charge pulse proportional to the energy of
X-ray
The pulse is first converted to a voltage (detector is off)

The signal is then amplified throught a field effect transistor (FET):
detector is off



The EDX detector device

S00V

X-rays

p-type region
Gold contact (dead layer
surface ~100 pm)
(~20 nm)
Li-drifted intrinsic
region
n-type region
* Electrons Gold contact
o Holes : surface (~200 nm)

Figure 32.4. Cross section of a Si(Li) detector. The incoming X-rays
generate electron-hole pairs in the intrinsic Si which are separated by an
applied bias. A positive bias attracts the electrons to the rgar ohmic con-
tact after which the signal is amplified by an FET.



SDD

Silicon Drift Diode
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How does the SDD work?
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Si- based detector (schematic)
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Windows types:

Beryllium (Be) window detector.

The thickness of Be is about /~12um, it is too thick to detect x-

ray. The x-ray energy less than ~1keV are strongly absorbed.
Therefore the K of Z<11 can’t detect.(like B, C, N and O)

Ultrathin window(UTW, ATW) detector:
The thickness of UTW is usually <100 nm and the composition of
polymer, diamond, boron or silicon nitride. The newer UTW like
ultrathin diamond or BN or Al/polymer can withstand atmospheric
pressure, termed ATWs.

Windowless detector:
This system require high vacuums, like UHV system(~10-8 Pa). The
best performance of this system is the detection of Be(110 eV) K



Compare the EELS and EDX techniaque

 Prior to the 1980, most EDX detector were protected (from
the water vapor and hydrocarbon in the microscope
column) by a 10um thickness beryllium window, which
strongly absorbs photons of energy less than 1000eV and
percludes analysis of elements of atomic number less than
11.

« With development of ultrathin (UTW) or atmospheric-
pressure (ATW), elements down to boron can be routinely
detected, making EDX competitive with EELS for
microanalysis of light elements in a TEM specimen.

36



Low energy efficiency calculated for different window types
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Dead layer effect:
The p and n regions, at either of the detector, are
usually termed “Dead layer”

Why use Liquid N,

cooling ?
X-ray|4 | -
—> |4 - 3 1. Thermal energy would active electron-
+H intrinsic regign— hole pair, giving a noise level.
|_ ) n_‘ 2. The Li atoms will diffuse under applied
-V Q ) V bias, that will destroy the intrinsic
property.
dgad 3. The noise in FET will mask the signal
| ayer from low-energy X-rays.

eThe dead layer effect is more clearly at low-Z element.



Incomplete-charge collection (dead layer effect):
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because of the dead layer, the X-
ray peak will not be a perfect
Gaussian shape. Usually the
peak will have a low-energy talil,
because some X-ray energy will
be deposited in the dead layer
and will not create electron-hole
pairs in the intrinsic region. You
can measure this ICC effect from
the ratio of the full width at tenth
maximum (FWTM) to the FWHM
of the displayed peak,

An i1deal Gaussian shape gives a ratio FWTM/
FWHM of 1.82 (Mn K, or Ni K,) but this will be
larger for lower-energy X-rays that are more strongly
absorbed by the detector.



Intrinsic Germanium Detectors:

The higher purely intrinsic region is easy
produced than Si

The intrinsic region (IG) is ~5 mm and can
100% efficient detect Pb Ka ~75keV

The energy for e/h pair of IG is about 2.8 eV,
smaller than Si(3.8 eV)

PROTECT YOUR DETECTOR
The intense doses of high-energy electrons or X-rays
which can easily be generated in an AEM (e.g., when
the beam hits a grid bar) can destroy the Li compen-
sation in a Si(Li) detector, but there is no such pro-
blem in an IG crystal.



High energy efficiency up to 100 keV X-ray energy caculated
for Si(Li) and IG dectoe
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» A typical energy range for Si(Li) detector is 20KeV



